
1

Performance Monitoring

Of The

Apache Web Server

By

Radha Subrahmanyan

Student Number: 1232357

An engineering report submitted to the School of Information

Technology and Engineering at the University of Ottawa in

Partial fulfillment of the requirements for the degree of

Masters in Engineering

Ottawa, Ontario 1999

2

I hereby declare that I am the soul author of this engineering report. I
authorize the University of Ottawa to lend this report to other
institutions or individuals for the purpose of scholarly research.

 Radha Subrahmanyan

I further authorize the University of Ottawa to reproduce this report by
photocopying or by other means, in total or in part, at the request of
other institutions or individuals for the purpose of scholarly research.

 Radha Subrahmanyan

3

Abstract

Any electronic commerce application is often composed of a set of co-operating

pieces of software that may or may not be on the same machine. For a popular

EC service, it is obvious to note that there is a need for more than one EC server,

i.e. replicated servers. A system consisting of several servers should contain a

central entity, or broker as it is referred to in this report, that should keep track of

how the servers are performing. Since an e-commerce application is very

dynamic, the server performance would vary in time. This report describes the

design and construction of a software system that monitors the performance data

on each server and collects this data at regular intervals at the central broker.

The broker can then decide which servers should handle the incoming client

transactions. As a result, the client requests are handled by the server that can

provide the best performance, thus improving the overall efficiency of the multi-

server system.

4

Acknowledgments

First I would like to thank my supervisor, Dr. Gregor von Bochmann, whose

patience limits must have been set at new levels during the preparation of this

work. I learned many things from him, even though, most of them implicitly rather

than explicitly. I would like to thank my colleagues in the Distributed Systems

Research Group for their cooperation and friendship and I think I should specially

mention Khalil El-Khatib from the University of Ottawa and Mohamed-Vall O. M.

Salem from the University of Montreal.

I would also like to express my gratitude to my family especially my husband,

Ashok, without whose valuable help and technical guidance, this work would

have been impossible.

Radha Subrahmanyan

5

List of Figures

FIGURE 1: OVERALL SYSTEM SETUP...13

FIGURE 2: SYSTEM MODULES...14

FIGURE 3: APACHE SERVER IMPLEMENTATION...22

FIGURE 4: ARM API INSTRUMENTATION..24

FIGURE 5: GLOBAL SHARED MEMORY AND EVENT...32

FIGURE 6: SHARED MEMORIES AND EVENTS FOR APACHE CHILDREN..37

FIGURE 7: ORDER OF EVENTS BETWEEN THE AGENT AND THE BROKER ...57

FIGURE 8: SIMPLISTIC FINITE STATE MACHINE DIAGRAM FOR THE AGENT STATES59

6

List of Contents

ABSTRACT ... 1

ACKNOWLEDGMENTS.. 4

LIST OF FIGURES ... 5

LIST OF CONTENTS ... 6

1 INTRODUCTION .. 8

1.1 OBJECTIVE .. 9
1.2 GENERAL REQUIREMENTS OF THE PROJECT... 9
1.3 WORK PERFORMED...11
1.4 CONSTRAINTS...11
1.5 HOW TO READ THIS REPORT...12

2 SYSTEM OVERVIEW..13

2.1 CONTEXT OF EC SERVERS WITH THE BROKER...13
2.2 ARCHITECTURAL DIAGRAM...14
2.3 FUNCTIONS OF THE MONITORING AGENT ..15

2.3.1 Collecting raw data..15
2.3.2 Building performance report ...15
2.3.3 Calculating the monitoring parameters ...16

2.4 QOS BROKER PROTOTYPE ...16

3 RAW DATA COLLECTION..18

3.1 AN INTRODUCTION TO THE ARM API..18
3.1.1 Overview of the ARM API Function Calls ...19

3.2 INTRODUCTION TO THE APACHE SERVER ...21
3.2.1 Overview of the Apache implementation ..21
3.2.2 Instrumentation of the Apache with ARM API function calls..23

3.3 INITIALIZATION OF THE MONITORING AGENT ...25
3.3.1 IPC between the agent and the server ..27

4 INTERFACE BETWEEN THE AGENT AND THE ARM-INSTRUMENTED APACHE.........29

4.1 COMMUNICATION THROUGH SHARED MEMORY AND RELATED EVENT..29
4.1.1 Implementation of the ARM-instrumented Apache using Shared Memory29
4.1.2 Implementation of the agent using Shared Memory ..37

4.2 COMMUNICATION USING PIPES ..39
4.2.1 Implementation of the ARM-instrumented Apache using Pipes......................................39
4.2.2 Implementation of the agent using Pipes ..41

4.3 CALCULATING PERFORMANCE PARAMETERS..45
4.3.1 Calculation of mean response time ..45
4.3.2 Calculation of the load on the server ...46
4.3.3 Calculation of the capacity of the server ..46
4.3.4 Calculation of the utilization of server ...46
4.3.5 Calculation of the think time of clients ..46

5 INTERFACE BETWEEN THE MONITORING AGENT AND THE QOS BROKER49

5.1 MESSAGE PARAMETERS ..49
5.1.1 Monitoring agent identification parameters...49
5.1.2 Server parameters ..50
5.1.3 Performance report parameters ...50

7

5.2 MONITORING SESSION PARAMETERS..51
5.3 MESSAGES SENT FROM THE MONITORING AGENT ...53
5.4 MESSAGES SENT FROM THE QOS BROKER ..55
5.5 ORDER OF EVENTS BETWEEN THE BROKER AND THE AGENT ..57
5.6 THE STATES OF THE MONITORING AGENT...58
5.7 IMPLEMENTATION OF THE INTERFACE BETWEEN THE BROKER AND AGENT...................................60

6 MANUAL TEST SCENARIO...64

7 CONCLUSIONS..66

8 APPENDIX A – MONITORING AGENT CODE ..67

9 APPENDIX B – ARM INSTRUMENTED APACHE SERVER CODE (LOGAGENT.C)68

10 APPENDIX C – PROTOTYPE QOS BROKER CODE...70

11 APPENDIX D – GENERAL USER GUIDELINES ..73

12 APPENDIX E – COMPILING THE MODULES ...76

REFERENCES..77

8

 1 Introduction

It is hard to imagine conducting business around the globe nowadays without

computer systems, networks, and software. We distribute and search for

information, communicate with each other, and transact business. The

computers themselves get faster, smaller, and less expensive while the networks

are faster, have more capacity, and are more reliable. However, no matter how

much applications change, administrators and analysts responsible for the

applications care about the same questions they have always cared about, such

as,

• Are transactions succeeding or failing?

• If transactions fail, where is the failure? What is the cause of the failure?

• What is the response time experienced by the end user?

• Where are the bottlenecks? Which sub-transactions of the user transaction

are taking too long?

• Who uses the application and how many of which transactions are they

using?

• How can the application or environment be tuned to be more robust and to

perform better?

Such data are especially valuable in today’s rapidly growing electronic commerce

applications. This project aims at collecting such information from within an

application and passing it on to a central entity which then, based upon this

9

knowledge, reschedules the client requests, thus improving the overall

performance of the system.

1.1 Objective

The main objective of this project is to build a system to monitor the performance

of a Web server by monitoring server-specific information such as the load on the

server, or user-specific information such as the server utilization, the mean

response time over a specified interval, the time between successive requests

from a given client as received by the server etc. This has been achieved by

implementing a software program called the monitoring agent on the same

machine as the server. This program taps the server to obtain some key pieces

of information about the server and then calculates the above parameters. Upon

collecting this information, a separate entity called QoS broker, which runs on a

separate machine, can take steps to better schedule the subsequent client

requests among the available servers in order to achieve maximum resource

utilization and minimum response time for the overall system.

1.2 General Requirements of the project

As mentioned earlier, there are 3 major entities involved in building the

performance monitoring system for the Web server under consideration. These

modules are the server, a monitoring agent, and a QoS broker. The following

gives the requirements for these three entities for the proper functioning of the

monitoring system.

10

1. The performance monitoring system will use the ARM API function calls

(about which we learn in detail in Section 3.1.1) which are inserted in the form

of probes within the application in order to collect some raw application

performance data. The idea is to make the application almost unaware of the

introduction of these probes, i.e. the application functioning should be

unaffected by the incorporation of these measurement probes.

2. The information collected should be used to calculate application parameters.

This is done by another entity, called the monitoring agent, which could sit on

the same machine as the application itself.

3. The monitoring agent should use a generic performance reporting protocol

based on UDP/IP, to transmit the performance parameters, in the form of

“performance reports” to the QoS broker. The performance parameters to be

calculated are the load on the server, the mean response time for user

transactions, the server utilization, time between successive requests from

the same client, which is termed “think time” for that client, and so on. The

broker then reschedules the client requests based on these performance

reports.

4. The Performance Reports should be as accurate and reliable as possible.

5. The Monitoring agent should send these performance reports periodically to

the QoS broker, with the periodic interval suggested by the QoS broker.

6. The Monitoring agent must also handle asynchronous queries from the QoS

broker, other than sending the periodic reports, if such a necessity should

arise.

11

1.3 Work Performed

Based on the requirements as mentioned above, I designed a performance

monitoring system for the Apache Web server, using the ARM measurement

interface. This involved identifying the parts of the server code, which deal with

user transactions and inserting the ARM API function probes at these points. I

then designed a monitoring agent, which collects the raw data from the Apache

server and uses them to calculate server performance parameters. Some

examples of the raw data collected are: the time at which a transaction starts, the

time at which it stops, how many transactions are currently getting processed etc.

These data are used to calculate server parameters like response time,

utilization, load and so on. I also designed a QoS broker prototype (a more

complete implementation of which will be done by my colleague, Mohamed-Vall

O. M. Salem) which gathers the “performance reports” from the monitoring agent.

Mohamed and myself mutually agreed upon the protocol used for communication

between the monitoring agent and the QoS broker, as well as on the server

parameters that are needed for eventually allocating the client requests to the

various servers.

1.4 Constraints

As mentioned earlier, the objective of this project is to implement a performance

monitoring system for a Web Server. Although the implementation itself has been

made very generic, it has been built specifically for the Apache Web Server. The

reason for this is that the Apache source code is available as freeware. In order

to measure the capabilities of the Apache server, monitoring points (probes)

12

have been inserted within the Apache code. This is done using the Application

Response Measurement (ARM) API functions available through Tivoli Systems

(IBM) and Hewlett-Packard, also as freeware. Also this implementation has been

done specifically for a Windows NT environment and will therefore need to be

ported for other non-Windows platforms. Thus this entire project is limited to the

above-mentioned environment only.

1.5 How to read this report

Section 2 of this report gives an overview of the project. It then explains the raw

data collection in Section 3. In Section 4, the interface between the agent and the

Apache server is explained in great details. In Section 5, the interface between

the agent and the QoS broker is explained in detail. The report then explains in

Section 6 how the system is tested with a sample test scenario. After a brief

section on conclusions and some ideas on how this work can be extended to

include different types of server performance parameters for different types of

server, in Section 7, there are the appendices. The appendices contain the

source codes of the three modules, and some explanation on how to compile and

use the system. The references point the reader to some useful books and web-

sites.

The reader is advised to read Sections 1, 2 and 3 in sequence. Sections 4 and 5

and the appendices could be read in any order. Happy reading….

13

 2 System Overview

2.1 Context of EC servers with the broker

Figure 1 shows the hardware setup for the overall system. As seen here, the

QoS broker first receives the client requests. The broker gets performance

reports from the various servers and based upon these performance reports the

broker schedules the user requests. The performance reports are built by a

monitoring agent which can reside on the same machine as the server itself.

After this negotiation, the server handles the client requests. The monitoring

helps improve the overall response times of client requests by adjusting the load

of each server.

QoS broker

Negotiation

Negotiation

Negotiation

Monitoring

Monitoring

Monitoring

Server 1

Server 2

Server n

Client

Client

Client

Client

Request / Response

Figure 1: Overall system setup

14

2.2 Architectural Diagram

Figure 2 below shows the entire system that consists of the monitored

application, i.e. Apache Web server, the monitoring agent, which resides on the

same machine as the application itself and the QoS broker which resides on a

separate machine.

On the same machine

Apache
server
application

Monitoring
agent

Pipes / Shared
Memories

QoS
broker

UDP/IP
sockets

Figure 2: System Modules

The parameters that need to be measured from the Apache Web server (see

Section 1.2) are gathered using ARM API function calls as probes within the

server code. The monitoring agent, which resides on the same machine as the

application, gathers this “raw data” from the application and consolidates it in the

form of performance reports that are sent to the QoS broker. The inter-process

communication (IPC) between the Apache server and the monitoring agent is

either by means of shared memories and associated events, or through pipes,

depending on what has been selected at compile time. The IPC between the

QoS broker and the monitoring agent is through UDP/IP sockets. The interface

between the two entities is defined using a proprietary protocol, termed

“performance reporting protocol”, and was mutually agreed upon by Mohamed-

15

Vall O. M. Salem from the University of Montreal and myself. Later in the report,

we shall look into the details of these system modules as well as the interfaces

between them.

2.3 Functions of the monitoring agent

The functions of the monitoring agent, or agent for short, can be broadly

classified as follows:

2.3.1 Collecting raw data

The very first function of the monitoring agent is to collect Apache performance-

related raw data. This is done using the ARM API function calls within the

Apache code as has been mentioned earlier in the report.

2.3.2 Building performance report

The raw data collected are used to further calculate the performance parameters,

such as the load on the server, the utilization, the mean response times, etc.

These performance parameters are used to form “performance reports” and the

reports are passed on to the QoS broker. Thus the monitoring agent has to

communicate on one end with the application and on the other end, it passes

calculated parameters about the application to the QoS broker. The agent sends

the same reports to the broker whenever it receives an asynchronous status

query from the broker.

16

2.3.3 Calculating the monitoring parameters

The performance report is built using triggers from Apache at specific times, as

described in Section 3.2.2. To reiterate what was mentioned earlier in this report,

the Apache code is incorporated with ARM API function calls. These calls are

inserted in appropriate places in the code, so that the triggers are sent out to the

monitoring agent when those ARM function calls are executed by the application.

The agent thus would know what time a transaction starts and when it stops.

These values would be used to calculate the response time for that transaction.

Also, over a measurement interval (which the QoS broker decides), the number

of transactions and the sum of the response times of all transactions within this

interval are determined. These values are used to calculate the mean response

time. Similarly, the load and utilization of the servers as well as the think time of

each client can be calculated from appropriate information provided by the

triggers to the agent. The load is calculated as the number of transactions or

requests received by the server, during the measurement period, and the

utilization is calculated as the amount of the server capacity that is currently in

use by the clients for processing transactions.

2.4 QoS broker Prototype

This entity has just been built as a prototype for the actual broker, which will be

implemented by Mohamed-Vall O.M. Salem of the University of Montreal. The

QoS broker communicates with the monitoring agent using UDP/IP sockets,

since these two applications reside on different machines on the network. The

function of the QoS broker is to register each agent, receive periodic updates on

17

the performance of the application associated with that agent and when

necessary, to query the agent asynchronously. This protocol between the agent

and the QoS broker was agreed upon mutually by the author and Mohamed-Vall

O.M. Salem.

18

 3 Raw Data Collection

The following sub-sections explain the modules involved in collecting raw data

from the Apache Web Server. Some background information about ARM and

Apache has been included to better understand their inter-working.

3.1 An introduction to the ARM API

ARM stands for Application Response Measurement. It is an Application

Programmers’ Interface (or, API) jointly developed by an industry partnership and

is used to monitor the availability and performance of applications [1]. This

monitoring is done from the perspective of the application itself, so it reflects

those units of work that are important from the perspective of the business.

Typically, applications define units of work (transactions) that are meaningful

within the application. Some examples are transactions initiated by a user or

transactions with servers. The applications then call the API through the function

calls that are inserted as probes within the applications. For instance, when

transactions begin and end, allowing these transactions to be measured and

monitored. We will therefore, need to need to install and configure an agent that

implements the API, and an application to manage the agent.

It has been claimed that the biggest plus in using ARM is that ARM has been

designed to be a high-speed interface that has minimal impact on applications.

ARM agents should be designed to quickly extract the information that is needed

and return control to the application immediately. Processing of this collected

19

information is done in a different process that can run when the system is

otherwise idle.

3.1.1 Overview of the ARM API Function Calls

The ARM API is made up of a set of function signatures that are contained in a

shared library. A performance measurement agent that supports the ARM API

provides an implementation of these functions. When we insert ARM function

calls in a particular application, the agent that implements these functions can

monitor it. The advantage of this approach is that the application customers can

choose any measurement agent that best meets their needs without the

application needing to change. The ARM API includes the following functions:

� arm_init : During the initialization of an application, calling arm_init names that

application and optionally the users, and initializes the ARM environment for

the particular application. A unique identifier is returned that must be passed

as a parameter to the function, arm_getid.

� arm_getid : This function is used to obtain an identifier which is used to

characterize a transaction class used in the application. This is often done

during the initialization of the application. A transaction class is a description

of a unit of work, such as "Check Account Balance". In each program, each

transaction class may be executed once or many times. arm_getid returns a

unique identifier that must be passed to the ARM function, arm_start.

� arm_start : This function signals the start of the execution of an instance of a

transaction of a particular class and returns a unique handle, called the

20

transaction instance identifier, to be passed to the two other function,

arm_update and arm_stop.

� arm_update : This is an optional function that can be called any number of

times after arm_start and before arm_stop. arm_update gives information

about the transaction instance, such as a "heartbeat" after a group of records

has been processed.

� arm_stop : arm_stop signals the end of the transaction instance.

� arm_end : At termination of the application calling arm_end cleans up the

ARM environment for that application. There should be no problem if this call

is not made, but memory may be wasted because the monitoring agent keeps

some memory even though it is no longer needed.

The ARM Software Developers’ Kit (SDK) comes with a NULL shared library for

the above functions. This NULL library can be used to test the instrumentation of

the particular application. The library always returns zero for all the functions, but

it is used to ensure that the proper parameters are passed in each of the above

function calls. Apart from this NULL library, SDK also comes with a logging

agent, logagent.c. Since this file is available as a source code, it needs to be

compiled separately. This file provides a little bit more information than the NULL

library, since it provides logging but it still can not be used as a measurement

agent for testing the ARM instrumentation of the application.

There are three basic tasks involved in instrumenting an application with the

ARM API.

1. Define the key business transactions within the application.

21

2. Modify the application to include calls to the ARM API. The NULL libraries

and logging agent in the ARM SDK can be used for initial testing. The key is

to decide where to place calls to the ARM API, by doing a good job defining

the key business transactions.

3. Replace the NULL libraries or logging agent from the SDK with an ARM-

compliant agent so that the application can be monitored as desired.

3.2 Introduction to the Apache Server

The Apache Project is a collaborative software development effort aimed at

creating a robust, commercial-grade, featureful, and freely available source code

implementation of an HTTP (Web) server [2]. The project is jointly managed by a

group of volunteers located around the world, using the Internet and the Web to

communicate, plan, and develop the server and its related documentation. These

volunteers are known as the Apache Group. In addition, hundreds of users have

contributed ideas, code, and documentation to the project. Project Apache exists

to provide a robust and commercial-grade reference implementation of the HTTP

protocol. It is a platform upon which individuals and institutions can build reliable

systems, both for experimental purposes and for mission-critical purposes.

Apache has been shown to be substantially faster than many other free servers.

And it is always better to have a mostly-fast free server, than an extremely fast

server that costs millions of dollars. In a recent survey, Apache has been

declared as the most popular WWW server on the Internet.

3.2.1 Overview of the Apache implementation

22

The main Apache Code, the http_main.c file, has been designed in such a way

that the main Apache process (or parent process, as it is termed in the actual

server code) spawns one or more worker processes that accept client requests.

The parent process then has to just wait around for the child process to die, in

which case it starts a new one. The parent process also handles restarts (by

creating a new working process, then signaling the previous working process to

exit) and shutdowns (by signaling the working process to exit). There is no

shared memory or "scoreboard" between processes, since only one is ever

active at once (or at most, two, when one has been told to shutdown but is

processing outstanding requests, and a new one has been started). The design

is clearer from the following explanation as well as the accompanying

Figure.

master_main() {
 parent process
}

worker_main() {
 main thread

 add_job();

Parent
process
creates a
worker
process

child_sub_main() {
 remove_job();
}

worker thread # 1

child_sub_main() {
 remove_job();
}

worker thread # nthreads

Creates
worker
threads

::::::::::::
::::::::::::
::::::::::::
::::::::::::

Incoming
client
requests

Apache Server

Figure 3: Apache Server Implementation

23

The parent process operates within the master_main () function. Within the

worker process, there is one main thread and a static, but configurable, number

of worker threads or child threads, which execute the client requests. The main

thread runs within the worker_main() function, and the first thing this function

does is create the worker threads, which operate in the child_sub_main()

function. The main thread then goes into a loop within worker_main() where it

does a select() on the listening sockets. The select times out once per second so

that the thread can check for an "exit" signal from the parent process. If this

signal is set, the thread will exit, but only after it has accepted all incoming

requests already in the listen queue. When a new client request becomes

available, the main thread does a select and places the newly available socket

onto a list of jobs (using the add_job() function). Then any one of the fixed

number of worker threads takes the top job off the job list with remove_job() and

handles that connection to completion. After the request has been processed,

the thread is free to take another job from the job list. However the jobs are

scheduled in an order so that each worker thread gets to execute jobs after the

remaining threads have taken their share of jobs from the job list.

3.2.2 Instrumentation of the Apache with ARM API function calls

24

}

master_main() {
 parent process
}

worker_main() {
 main thread
 arm_init()
 arm_getid();
 listen()
 arm_start()
 add_job();
 ::::::::::::::::
 ::::::::::::::::
 arm_end()
}

Parent
process
creates a
worker
process

child_sub_main() {
 remove_job();
 process request
 arm_stop();
}

worker thread # 1

child_sub_main() {
 remove_job();
 process request
 arm_stop();
}

worker thread # nthreads

Creates
worker
threads

::::::::::::
::::::::::::
::::::::::::
::::::::::::

Incoming
client
requests

Apache Server

arm_init()
{
}

arm_getid()
{
}

arm_start()
{
}

arm_stop()
{
}

arm_end()

Logagent.c

Figure 4: ARM API Instrumentation

The task of instrumenting Apache is performed based on the generic procedure

as described in Section 3.1.1. As mentioned in Section 3.2.1, the main child loop

25

operates within the worker_main() function, and within this function, the actual

worker threads are created which execute the client requests. The ARM function

calls, arm_init () and arm_end () are therefore inserted within the worker_main()

function. These two calls mark the application for an ARM environment. The next

function call to be inserted within the server code of Apache is the arm_getid ().

The next step is to identify the transactions so that the function calls arm_start (),

arm_stop () and arm_update (), can be inserted in appropriate places. Again, as

is clear from the previous sub-section, the function that takes care of actually

executing the user transactions, is the child_sub_main () function. This is the

function where the arm_start () and arm_stop () function calls are inserted. There

has been no specific use for the arm_update () function in this application, and

hence it has not been used as a part of the instrumentation.

3.3 Initialization of the Monitoring agent

The monitoring agent is a separate entity that can and in most cases, resides on

the same machine as the server itself. The functions of the agent were

mentioned earlier in Section 2.3.

Upon initialization, the agent reads the configuration parameters from the

Windows Registry. These parameters are stored in the key

“HKEY_LOCAL_MACHINE\Software\CITR\monitoring agent “. The configuration

parameters are

� AgentQueryPort

This is the UDP port number of the agent to which the broker sends its

asynchronous status query requests. As will be learnt later in this report, the

26

broker sends these query messages anytime, if it needs to know the status of

the server at times other than the ones at which the periodic performance

reports are sent by the agent.

� ApacheClusterName

This is the public name of the cluster of servers to which a particular server

belongs. This name is a virtual address used by clients when they

communicate with the broker to refer to the cluster of real servers.

� ApacheServerName

This is the real IP address and port number on which the server monitored by

the agent receives requests from clients.

� PipeName

This is the pipe name used by the server to write its data and for the agent to

read from. In this project, the agent does not send any information to the

server using this pipe, so it is a uni-directional pipe. The pipe name suggests

whether the pipe is used between processes on one machine (which is the

case in this project) or it is a networked pipe.

� QoSBrokerName

The IP address of the broker to which the agent sends its registration

message, to start the communication between the agent and the broker.

� QoSBrokerPort

This is the TCP port number to which the agent sends its first message, the

registration message, for further communication between the two entities.

� RegisterTimeOut

27

This is the time, after which an agent has to re-send its registration message

to the broker, if it does not get a registration acknowledgement message from

the broker for the registration message sent earlier.

� ThinkTimeOut

This is the time at which the agent passes on the mean think time values to

the broker. It can be set equal to the reporting time interval. More about how

the think time is calculated is given in Section 4.3.5.

Further details on setting configuration parameters from the Registry are

described in Appendix D.

Also upon initialization, the agent creates two threads named the

“ApacheHandler” thread and the “BrokerHandler” thread. As is obvious from the

two names, the former handles the communication between the agent and the

Apache server and the latter handles the communication between agent and

broker.

The following sub-sections discuss the IPC between the agent and the server.

3.3.1 IPC between the agent and the server

The agent has to communicate with the server to obtain the raw data in order to

calculate the server-specific parameters like load, utilization etc. Since the agent

resides on the same machine as the server itself, the Inter-Process

Communication (or IPC) can be either through shared memories or pipes, as

mentioned in Section 2.2.

The IPC mechanism can be selected at compile time. The advantage of using

shared memory is of course the speed since the two applications sit on the same

28

machine and the fastest mode of communication would be accessing memory.

But it might introduce synchronization problems in the sense that after the server

writes into a specific named memory, the agent has to read from that memory

before the server updates the information by rewriting onto it. The server also

sets an event after writing into the memory so that the agent can wake up to this

event and do the reading. In case the agent gets delayed in reading from a

shared memory, the server will not know about this and during the next turn, it

will rewrite into the same memory.

On the other hand, the advantage of using pipes is that this synchronization

problem does not arise at all, and pipes can be used even for networked IPC

applications. Hence if in the future, the agent is moved to a different machine

from that of the server, the pipe name is all that needs to be changed to indicate

that the IPC is now between processes on different machines. However it might

not be as fast as reading and writing from memory.

29

 4 Interface between the agent and the ARM-instrumented

Apache

As mentioned earlier, the communication between the agent and the Apache

server, is either by means of a shared memory followed by event triggering or

through pipes. The following two sub-sections describe both procedures in some

detail:

4.1 Communication through shared memory and related event

4.1.1 Implementation of the ARM-instrumented Apache using Shared

Memory

The main C file within the Apache is http_main.c and here is where we insert the

necessary ARM probe function calls. The particular functions within the

http_main.c, into which the various ARM calls are inserted, were explained

earlier in Section 3.2.2. The actual implementation of these ARM functions is

done in another file called Logagent.c, which was provided as part of the ARM

SDK and which had a skeletal structure for the ARM functions. The specific

implementation that was required for this project was then used to replace the

native Logagent.c.

Upon initialization, the Apache code will encounter the very first ARM call,

arm_init (), which had been inserted earlier within the worker_main() function of

http_main.c file. This function creates a global shared memory with a specific

name called “ApacheServerMain” and also provides a handle to this shared

30

memory called “hMapFile” and a pointer to this shared memory called

“lpMapAddress. The handle is returned by the operating system when the shared

memory object is created, but for an application designer, the pointer to the

shared memory object is required. This shared memory contains a structure with

information on

(i) the number of children generated,

(ii) the application id for this Apache application and,

(iii) the transaction id.

Now the value of application id is obtained directly from the return value of

arm_init (), and the value for transaction id is obtained as a return value from

arm_getid (), which is also inserted within the worker_main() function. However

the value for the number of children is not obtained directly from either of these

functions. This value is available from the main function within the Apache

implementation, called “http_main.c”. This function has an integer variable by the

name “nthreads” and this gives us the value of the number of child threads

generated by Apache once it starts up. Thus we introduce a pointer called

“globalData” which points to the same structure “ARMGlobalData”. While calling

arm_init () from http_main.c, we pass this structure as a parameter for the data.

In the implementation for arm_init () in Logagent.c, we first check to see if the

size of the data that we received from the arm_init () call in http_main.c is the

same as that of the structure “ARMGlobalData”, and if so, we initialize the pointer

“globalData” to the value obtained as data from the arm_init () function call in

http_main.c. So now we have information on the number of child threads

31

(obtained from the integer value of nthreads from http_main.c). Also since

arm_init () returns the application id and arm_getid () returns the transaction id,

we have all the values necessary to be put into the global shared memory. Now

as mentioned before, “lpMapAddress” is the pointer to this global shared memory

“ApacheServerMain”. So now we give values to the various fields of the structure

pointed to by “lpMapAddress”. Thus we insert values for the number of children,

the application id and the transaction id, obtained respectively from http_main.c,

arm_init () return value and arm_getid () return value.

In Logagent.c, we then create the event that would trigger the Monitoring agent

to wake up and read the data put into the “ApacheServerMain”. This event’s

handle is called “hGlobalDataAvail” and the event itself is called

“ApacheGlobalDataAvail”. Since we get the transaction id only as a return value

from the arm_getid (), this event is created in the function arm_getid ().

32

Apache Server
http_main.c, Logagent.c

applid = arm_init();
tranid = arm_getid();

Monitoring agent
MultiServerThread_v2.cpp

Global Shared Memory

Event to trigger the Agent

hGlobalDataAvail

ApacheServerMain
{ int NumOfChildren;
 int ApplId;
 int TranId;
 int QoSThreshold;
}1. Server writes

into shared memory

4. Agent reads
from the shared
memory

2. Server sets the
corresponding
event

3. Agent wakes up
to the
corresponding
event

Figure 5: Global Shared Memory and Event

Next based on the value of the number of children, Apache generates shared

memories and events to trigger the monitoring agent to read from these shared

memories, for each child, so that there are as many shared memories and

associated events as there are number of children. The child shared memories

are suggestively given the names “ApacheChildSharedMem0”,

“ApacheChildSharedMem1”, “ApacheChildSharedMem2”, and so on until

“ApacheChildSharedMem (NumOfChildren – 1)”. The associated events for the

children are also given obvious names “ApacheChildEvent0”,

“ApacheChildEvent1”, etc.

These child shared memories are formed by creating an array with a pointer

called “childInfo” and with the number of elements of the array equal to the

33

number of children generated earlier by Apache. Each element of this array has

the structure given by “ChildSpecificInfo” which holds

(i) the particular child number in question, “childNum”

(ii) a handle to the shared memory for the given child, “hChildSharedMem”

(iii) a pointer to the data in this shared memory, “lpChildSharedMem” and

(iv) a handle to the event that would trigger the Monitoring agent to read from

this shared memory, “SignalEvent”.

Now the data in the shared memory for a given child, pointed to by

lpChildSharedMem, has the following information saved in it:

(i) the message Id as obtained from Apache. arm_start () will have message

id of 1, while arm_stop () has an id of 2. These are defined in the header

file “arm_instr.h”, which will be used by both Apache’s logagent.c and the

monitoring agent,

(ii) the particular child number, “childNum” , which is extra confirmation about

the particular child, since this information can be gathered implicitly by the

shared memory name, which are suggestive (these names are given a

little later). Also the pipe implementation requires the childNum to be

specifically mentioned, as there we do not have any other suggestive

information,

(iii) a handle to the transaction, i.e. the particular transaction instance of the

transaction class that we are monitoring, given by “tranHandle”. This is

returned in arm_start () and will be used by the associated arm_stop ()

34

(iv) the time at which Apache encountered an arm_start (), given by

“startTime”

(v) the time at which Apache encountered an arm_stop () (these values are

necessary to calculate the response time per transaction)

(vi) the total time, in milliseconds, elapsed since the system started up, until

there is an arm_start (), given by “StartTickCount” and

(vii) the time elapsed, in milliseconds, from system startup until there is an

arm_stop (), given by “StopTickCount”. The last two values are necessary

since the startTime and stopTime, give the time in a typical clock format

and this would mean that we would have to deal with the low-order wrap-

rounds at hours, minutes, seconds and milliseconds as well as a high

order wrap-round like days, months and years. If the time is given in

milliseconds, one will not need to worry about this conversion.

(viii) the time in milliseconds, that a job spends in the queue, “TimeInQueue”.

This value is calculated within Apache’s functions, add_job() and

remove_job(). The difference in the times at which a job enters the job

(with add_job()) and the one at which one of the worker threads removes

it (with remove_job()).

(ix) the client IP address in a regular long integer format

(x) the client IP address in the dotted typical string format

Upon encountering an arm_start (), the particular child will open the named

shared memory associated to its child number, and write the valid data into this

memory. The data written here will include the type of message indicated by the

35

message Id (which will be TRAN_START associated to arm_start ()), the child

number, the start handle (returned by the arm_start () and to be used by

arm_stop ()), the start time which is given by the local time of the system at the

time this arm_start () was encountered along with the date, and the stop time

which here will be null, since the child has not yet encountered the arm_stop ()

function call.

The message id associated with the ARM call arm_start (), given in the header

file “arm_instr.h” is called TRAN_START.

Right after writing this data into the child’s associated shared memory, the child

also sets the associated named event. Now this same shared memory and

named event are known to the monitoring agent too, so that the agent can wake

up to the named event and read the data from the named shared memory. We

will look at this again when we get into the details of the agent implementation.

Upon encountering arm_stop (), the same procedure is repeated, i.e. the child

related information is written into the child’s particular shared memory and then

the associated named event is set. The names of the shared memories and

associated events used here are the same as the one used for arm_start (),

which means that the same memory is updated with the new and extra

information and the same event is set for a second time. In the information

written into the shared memory, the data that is changed from the one written

before by arm_start () are:

36

(i) the message id is now corresponding to arm_stop (), which is

TRAN_STOP. As before this information is given in the header file

“arm_instr.h”.

(ii) the stopTime information i.e. the time at which Apache encounters the

arm_stop ()

(iii) the StopTickCount which gives the value of the milliseconds elapsed from

system start-up until the time at which Apache encounters arm_stop ().

The other values like the childNum, tranHandle and startTime remain the same

as before.

This is done for each of the ‘nthreads’ child threads generated by the worker

Apache. Thus each child writes its related information of arm_start () and

arm_stop (), when it encounters them, into its part of shared memory and each of

the children has its own named event.

ARM- e d
Apa c h e
wr i t e s i nt o
t he Sha r e d
Me mor i e s
a nd s e t s t he
r e l a t e d
e ve nt s

Me a s u r i ng
Age nt wa ke s
u p t o t he
e ve nt s a nd
r e a ds f r o m
t he Sha r e d
Me mo r i e s

ApacheChildSharedMem0 ApacheChildEvent0

ApacheChildEvent1ApacheChildSharedMem1

ApacheChi ldSharedMem
 (nthreads – 2)

ApacheChi ldSharedMem
 (nthreads - 1)

ApacheChildEvent
 (nthreads – 2)

ApacheChildEvent
 (nthreads - 1)

::::::::::
::::::::::
::::::::::
::::::::::
::::::::::

::::::::::
::::::::::
::::::::::
::::::::::
::::::::::

37

Figure 6: Shared Memories and Events for Apache Children

When the Apache server goes down, it sets the event called “ApacheExitEvent”

and it is used to notify the agent that the server is going down. It is quite obvious

to note that this event will be set when Apache encounters the ARM function call

arm_end (). Upon encountering arm_end (), the ARM-instrumented Apache also

clears up all the shared memories created earlier and closes all handles and

frees up any other memory used up before.

4.1.2 Implementation of the agent using Shared Memory

As mentioned earlier, the monitoring agent runs two threads upon initialization –

the ApacheHandler thread and the BrokerHandler thread. The explanation of the

ApacheHandler thread is given below while the explanation of the

implementation of the BrokerHandler thread is described in Section 5.1.

The main function of the “ApacheHandler” thread using shared memory is to

read the data written by Apache onto the shared memories. As soon as Apache

writes the global data into the global shared memory, it sets the associated

event, hGlobalDataAvail. The agent then wakes up to this event and opens the

event by the name “ApacheGlobalDataAvail” using the handle to the event

hGlobalDataAvail, as was created by Apache. The agent keeps trying until it is

able to open this event. Then the agent waits indefinitely for this event to be set

by Apache, using the Windows system command “WaitForSingleObject”. Once it

finds the event set by Apache, the agent attempts to open the associated shared

memory “ApacheServerMain”, using the handle to shared memory “hMapFile”.

38

Once the agent opens the shared memory, it starts trying to read data from this

shared memory, by mapping the view of the shared memory in a read-only

format using the pointer “lpMapAddress”. Once the data is read, the values for

the number of children, the application and transaction ids are copied into the

local variable structure “GlobalApacheData”. Now that the agent knows the

number of child threads, it has to allocate memory for the handles to the

‘nthreads’ child events as well as for two extra handles – one for the agent exit

event and the other for the Apache exit event. Thus a total of (nthreads + 2)

handles to events are created. Next the agent allocates memory for the child-

specific information structures. Again there will be ‘nthreads’ of these so that we

have an array called “childInfo” with ‘nthreads’ elements, each representing

information specific to a child. The child specific information, in this case,

consists of

(i) the handle to the child shared memory and

(ii) the pointer to the shared memory structure within

As can be noted, the child specific information here is different from what we had

in Apache, where we also had the handles to events included in the information.

Here however, the agent needs to wait for the events to be set and we use the

Windows system command “WaitForMultipleObjects” to wake up to any of these

events and this command expects a pointer to an object-handle array. So we

separate the handles to the events from the child specific information structure as

we had it in the ARM-ed Apache’s Logagent.c file. Now that the memory for

handles to events and pointers to shared memories are created, the agent opens

39

the events and then maps the view of the child specific files into a local address

space. Now the agent waits for any of these (nthreads + 2) events to be

triggered, using the Windows system command “WaitForMultipleObjects”. If the

triggered event is the ApacheExitEvent or agentExitEvent then the agent upmaps

views of the shared files (memories) for the children as well as the global file,

closes all handles and frees up all other used up memories. The agent then exits

the ApacheHandler thread. On the other hand, if any of the ‘nthreads’ child

events are triggered, then depending on which child event it is, the appropriate

information is gathered. Details about the parameters within this information were

given earlier in Section 4.1.1.

4.2 Communication using pipes

4.2.1 Implementation of the ARM-instrumented Apache using Pipes

The pipes implementation of the ARM-instrumented Apache is within the

AgentHandler Thread. The first thing that is done by this thread is the creation of

a named pipe, \\\\.\\pipe\\ApacheServerPipe. The pipe is made bi-directional so

that both pipe client (agent) and pipe server (Apache server) can read from and

write onto the pipe. The other modes set for this pipe include

� specifying that the data to be written to the pipe is a stream of messages (not

bytes),

� also data can be read from this pipe in the form of messages as opposed to

bytes, and,

40

� the pipe is made a blocking one so that any operation on the pipe is not

completed until there is data to be read from the pipe (in the ReadFile

operation), until data has been written to the pipe (in the case of the WriteFile

operation) or a client is connected (in the case of the ConnectNamedPipe

operation). Use of this mode can mean waiting indefinitely in some situations

for a client process to perform an action.

Also the value for the maximum number of instances for this pipe is indicated as

one (1). The thread then gets Apache to connect to the new client, the monitoring

agent.

The thread then enters an infinite loop waiting to read messages from the pipe.

The very first message on the pipe would be REGISTER_AGENT message sent

by the agent, in order for the agent to register with the Apache server. The

Apache server will then respond with a REGISTER_ACK message to

acknowledge the receipt the register message from the agent. With this ack

message, the Apache server also passes information on the number of child

threads within Apache (g_ApacheData.NumOfChildren), the application id

(g_ApacheData.appId), the transaction id (g_ApacheData.tranId) and the QoS

Threshold (g_ApacheData.QoSThreshold). As in the case of shared memory, the

structure of these messages is ARMGlobalData and is defined in the common

header file, “arm_instr.h”. The value for applId is obtained from the ARM function

call, arm_init (), the value for tranId is obtained from the ARM function call,

arm_getid () and the value for the number of child threads is obtained directly

41

from the Apache server code, since this is statically created once the server

comes up.

Upon encountering the ARM function call, arm_start (), the value for the number

of seconds elapsed since the system started up, is written onto the pipe. A

similar value will be written when the Apache server code encounters the ARM

function call, arm_stop (). The difference between these two values will give the

response time for that transaction, since arm_start () and arm_stop () are

inserted at the beginning and end of the actual client transaction. Also passed

along with this is the time and date at which the transaction starts with the time in

the typical clock format of hours, minutes, seconds, milliseconds and date in the

form of day, day of the week, month and year. So armed with this information,

the agent will be able to figure out what time and date any transaction starts, and

how much time elapses for Apache server to respond to that transaction. And

finally, upon encountering the ARM function call, arm_end (), the pipe is closed

and the connection is terminated.

The only other message that the agent could send to Apache server, is the

UNREGISTER_AGENT message to which Apache’s AgentHandler thread will

respond with an ack, UNREGISTER_ACK message.

4.2.2 Implementation of the agent using Pipes

As mentioned earlier, the pipe implementation has been done if a particular

situation requires the same. There might be some synchronization issues in

using shared memories and this has been described earlier in the report and in

42

such cases, it is advisable to use the pipes. The choice between the two is done

during compile time.

The main function of the ApacheHandler Thread implementation using Pipes is

to read the data written by Apache onto a named Pipe. So first the agent has to

open the already existing pipe. The name of the pipe is

\\\\.\\pipe\\ApacheServerPipe and it is known a-priori. The name is such that the

“.” indicates that the server (i.e. the Apache server) is on the same machine as

the client (i.e. the monitoring agent) and the actual name of the pipe is

“ApacheServerPipe”, onto which Apache writes the data. Opening this named

pipe returns a handle to access the named pipe and we call this handle “hPipe”.

The pipe is opened in generic read/write access, which means that the

ApacheHandler Thread application can do both read and write on this named

pipe. The thread uses the function WaitNamedPipe to be able to successfully

connect to an instance of the named pipe or until a time-out interval of 20

seconds elapses. Also, at this stage, the read/wait mode of the pipe needs to be

set. Here this mode is set to be of type “PIPE_READMODE_MESSAGE”, which

implies that the data to be read from the pipe is a stream of messages, as

opposed to a stream of bytes. That is necessary since the two processes,

Apache and agent, communicate by means of messages. Then two events are

created using Windows function CreateEvent, and assigned to two

OVERLAPPED structures, fileReadEvent and fileWriteEvent. A Windows

OVERLAPPED structure contains information used in asynchronous input and

43

output, so that an event is always non-blocking. Thus we have two events

fileReadEvent.hEvent and fileWriteEvent.hEvent.

The first message that the agent will sent to the server, is the

REGISTER_AGENT event. This message has to be written onto the named pipe

using the Windows WriteFile function. This function will be specified as a non-

overlapped function since unless the agent registration is complete, the server

cannot communicate further. After successfully writing the registration message

onto the pipe, the thread enters an infinite loop of reading messages from the

pipe. There are two types of read events that can occur on the pipe, namely the

fileReadEvent.hEvent and the g_AgentExitEvent. The thread therefore uses the

Windows WaitForMultipleObjects function to wait to receive any of these events.

If the g_AgentExitEvent is received, the handle to the pipe is closed. Upon

receiving the fileReadEvent.hEvent, one of the following messages will be

received.

� REGISTER_ACK : This message is sent by Apache upon receiving the

REGISTER_AGENT message. Along with this, information about the number

of child threads, nthreads, the application identifier and the transaction

identifier are also passed to the agent.

� TRAN_START : This message is sent by Apache when an arm_start () is

encountered. It informs the agent of the beginning of an instance of the client

request transaction. The server load variable, g_ServerLoad, is incremented

at this stage. Also, values for StartTickCount, StopTickCount, the client IP

address (of the client which sent the request associated with this

44

TRAN_START) and think time. More on the think time calculation is detailed

in Section 4.3.5. Since multiple clients will need to access this think time data

structure to add data related to their arm_start ()s, there is a need to use a

semaphore to lock the structure, while an entry/deletion is being made.

� TRAN_STOP: This message is sent to the agent to indicate the termination of

an instance of the client request transaction. The global variable on the server

load, g_ServerLoad is also decremented and the global variable on the

number of connections, g_NumConnections is incremented, indicating the

number of completed (successful) transactions. Again information associated

with this end of the transaction is used to add data into the think time data

structure. Also the total response time is calculated as the time spent in the

job list plus the actual servicing time. Again as before, a semaphore is used to

lock the data structure while data is being added/deleted by numerous clients.

As can be noted, these calculations should be identical to the ones performed

in the earlier section describing IPC between the agent and Apache by means

of shared memories and events. The think time as mentioned earlier, is

defined as the time between the end of last transaction and the beginning of

current transaction. Such times for each client are noted and then the mean

think time is calculated as the ratio of the sum of these think time values for

all clients to the number of such values considered. As also mentioned all

these parameters are calculated for each measurement period.

� TRAN_UPDATE : There has been no need for this particular message but it

may be useful for future purposes if there is a need for instance, to send more

45

detailed information about each transaction, like the time spent in the queue

for each transaction, the actual servicing time for each transaction etc.

� APACHE_EXIT : This message is sent by Apache upon its termination and

so the handle to the named pipe is closed and the ApacheHandler thread

exits.

4.3 Calculating Performance parameters

4.3.1 Calculation of mean response time

So now the agent has information about when a transaction starts (by the time at

which it receives the trigger for arm_start ()) and the time at which the

transaction stops (by the time at which it receives the trigger for arm_stop ()), so

the difference between the two values will give the total response time for that

particular transaction.

It is important to note that this time includes the time spent by the transaction in

the job list as well as the actual servicing time. Also the time spent in the job list

by a particular transaction instance, given by the transaction identifier or handle,

is already known directly from Apache, as the value of the variable

“TimeInQueue” written by Apache into the child shared memory. So the

difference between the overall time for processing a job and the time spent by

that job in the job list queue, gives the actual service time for the client request.

In this project, we do not pass the overall response time to the monitoring agent,

we just pass the service time to the agent.

46

Also the number of transactions can be known and so the ratio of the total

processing times from the various transactions and the number of transactions

would give the mean response time.

4.3.2 Calculation of the load on the server

The load on a server is calculated as the number of transactions or client

requests received by the server during the measurement interval. So every time

the agent receives a trigger for an arm_start (), the number of transactions, or

connections, is incremented by one.

4.3.3 Calculation of the capacity of the server

The capacity of the server would be the number of concurrent connections that

the server can handle. Now in Apache, the number of worker threads will decide

the number of concurrent requests being handled by the server, given by the

variable, nthreads.

4.3.4 Calculation of the utilization of server

The utilization of a server is calculated as the ratio of the load times the mean

response time and the capacity of the system. It is given by the formula:

Utilization = Load * Response Time / Capacity

4.3.5 Calculation of the think time of clients

The think time is defined in this project as the time between successive requests

from the same client. It is calculated as the time difference between the end of

one transaction and the beginning of the next transaction from the same client.

47

Each client is identified by its IP address, which is determined within the Apache

server code itself. Appropriately, Apache passes on to the agent, the information

on the time at which a transaction stops i.e. the connection closes, as well as the

time at which a new connection is established. As might be clear from the report,

these data are passed on to the agent anyway, to calculate the response time.

Thus no new information needs to be collected.

However, the value of think time itself needs some amount of calculation

because we are interested in knowing the mean think time of all the clients

present in the network, rather than that of each client separately. This means that

we use a linked list of think time records, one for each client. The fields in this list

are

� the client id, an integer

� the first (or previous) transaction stop time, which keeps getting updated for

each new transaction in the reporting interval period

� the following (next) transaction start time, which also keeps getting updated

for each new transaction in the reporting interval

� the total think time, which is the sum of the think times of all transactions

within the interval (as mentioned earlier, think time is the difference between

the end of previous transaction and the start of the next one)

� the number of think time values

� the mean think time, which is the ratio between the total think times for all

transactions from that client within that the reporting interval and the number

of such think time values

48

Once the mean think times of all clients is known, the overall think time for all

clients can be calculated as the ratio of the sum of all these mean think times to

the number of clients (i.e. the number of think time values summed)

All the data that the agent collects from the server are written into a log text file

called the “serverlog.txt”.

49

 5 Interface between the monitoring agent and the QoS broker

The other thread started by the agent is the BrokerHandler thread dealing with

the communication between the broker and the agent. As mentioned earlier, we

use the API for UDP/IP sockets to define the interface between these two

entities. The following describes how the agent is supposed to function with

respect to the broker once it is initialized and running.

As soon as the agent comes up, it registers itself with the broker. The registration

process involves informing the QoS broker of the agent’s address and port

number as well as the monitored server’s address. In our case, since these two

processes run on the same machine, the addresses would essentially be the

same. During the registration, the broker will provide a unique identifier for the

monitoring agent, which will be used in the following interactions. This way every

new agent/server that registers with the broker gets its own identifier and the

broker can keep track of each agent in its subsequent communications.

5.1 Message parameters

The following sub-sections give details of the parameters involved in the

messages exchanged between the agent and the broker.

5.1.1 Monitoring agent identification parameters

1. Cluster Name

This is the public name of the cluster of servers to which this particular server

belongs.

2. Server Address

50

The real IP address and port number on which the server monitored by the agent

receives request from clients.

3. Agent Address

The IP address and port number on which the agent is listening for incoming

monitoring requests. The broker uses this address to communicate with the

agent.

5.1.2 Server parameters

1. Server capacity

This gives the maximum number of concurrent requests that the server can

handle at the same time.

2. QoS-Thresholds

The maximum tolerable response time for this particular server. The specification

of this value is optional, and if it is not specified, the broker can use the full

capacity of the server without any consideration for the resulting response time.

5.1.3 Performance report parameters

The performance report is the periodic report sent by the monitor agent to the

broker. It contains the following information:

1. Report number

This sequence number is used to distinguish between reports from the same

agent.

2. Mean Response Time (MRT)

51

This is the observed mean response time of the server during the last

measurement interval.

3. Server Load

The estimated value of the load on the server during the last measurement

interval (the number of requests received by the server during the measurement

interval).

4. Mean Think Time

This gives the value of the mean think time of clients during the last

measurement interval. As mentioned earlier, it basically represents the time

between two successive requests from the same client. It is calculated as the

time between the end of one request from a particular client and the beginning of

the next request from the same client. Since we are interested in calculating the

mean think time for all clients, these think times are measured for all the clients

and then the mean is calculated by adding these individual think times and then

dividing that by the number of such measurements taken.

5. Number of Requests per client

This is the mean number of requests per client during the last measurement

interval. The requests, which stretch over two intervals, will be included in the

second interval, so that the number of requests would actually be the number of

completed requests.

5.2 Monitoring Session parameters

The broker specifies the following parameters for each newly registered agent.

1. Agent ID

52

This ID is used by the broker to identify the agent. As mentioned earlier, the QoS

broker gives this value to the agent, as part of the registration acknowledge

message.

2. Length of the measurement interval

This gives the length in seconds of the measurement interval.

3. Reporting frequency limit or session timeout

This is the allowed number of consecutive intervals for which an active agent

may not send any report to the broker. When this period expires, the broker

assumes that the monitoring agent and the server is no longer active. It is very

possible that a sent report gets lost in the network and hence does not reach the

broker. Upon such a session time-out lapse, in this implementation, the agent will

re-register with the broker.

In theory, when the broker notices that the agent and its server are inactive,

it should stop using the server. If the server/agent are really inactive, they

need to register again and get a new ID. If the broker thinks that a

server is inactive only because all report messages are lost in the network

that becomes a special situation for which the broker would need to query

the agent. The monitor at the broker side knows from the sequence number of

the received reports, the status of the connection between itself and the agent.

The planned broker (not my prototype, but the one implemented by Mohamed

Salem) actually keeps all the registration information and maintains a flag

variable which indicates whether the server is active or not. This variable is

53

activated when the server registers, and it is deactivated upon the reception of a

STOP message or a session timeout.

5.3 Messages sent from the Monitoring agent

The following gives details of the types of messages sent by the agent to the

broker.

1. Registration Message

This message is used by the agent to register itself and the server (hence the

machine on which they both run) to the broker. It is sent whenever the agent is

restarted, and contains the identification of the agent and the necessary general

information on the server. The information that the agent includes in its

Registration Message to the broker is described in Table 1.

Field Description Type Length
(# of

octets)
Message
Type or ID

The value is 1 Unsigned
Short

2

Cluster
Name

Name of the cluster of servers to which the
server belongs

- 64

Server
Address

The IP address of the server - 32

Server Port The port number used for this service Unsigned
Short

2

Agent name The IP address of the agent - 32
Agent port The port number used for the monitoring

service
Unsigned

Short
2

Server
Capacity

The capacity of the server Unsigned
Short

2

QoS-
Thresholds

The desired maximal limit for the server mean
response time

Float
4

Table 1: Registration Message

54

2. Update Message

The update message is the periodic message sent by the agent to the broker. It

contains the status of the server during the last measurement period. This

message is sent at the end of a measurement period or in response to a “Status

Query” message received from the broker.

Field Description Type Length
(# of

octets)
Message Type or
ID

The value is 2 Unsigned
Short

2

agent ID The identification of the agent Unsigned
Short

2

Message number The sequence number of the
message

Unsigned
Short

2

Mean response
time

The mean response time of the
server

Float 4

Load The number of connections
received

Long 4

Utilization The level of the server capacity
utilized

Float 4

Mean think time The mean think time of clients Float 4

Mean # of
requests

The mean number of requests per
client

Unsigned
Short

2

Table 2: Update Message

3. Stop Message

The stop message is sent by the agent to inform the broker to stop using the

server. This message is typically sent when a server is going down for

55

maintenance, or for other causes. After the reception of this message, the broker

acknowledges the message and stops using the server.

Field Description Type Length
(# of octets)

Message type of
ID

The value is 3 Unsigned
Short

2

agent ID The identification of the agent Unsigned
Short

2

Table 3: Stop Message

4. Status Response Message

This message is sent as a response to the Status Query message sent by the

broker. It has a structure similar to that of the Update message. The agent sends

the performance report (update report) from the last measurement period.

5.4 Messages sent from the QoS broker

The broker sends the following messages and the agent must recognize them

and respond with appropriate further messages.

1. Registration Acknowledgement

 This message is used by the broker to confirm the reception of a “Registration”

message. This message would often contain control information that the broker

would like to communicate to the monitor agent.

56

Field Description Type Length
(# of

octets)
Message type or
ID

The value is 4 Unsigned
Short

2

agent ID The identification of the agent Unsigned
Short

2

Interval The length of a measurement
interval

Unsigned
Short

2

Session Time-out The number of tolerable
consecutive measurement
intervals without any reporting

Unsigned
Short

2

Table 4: Registration Acknowledgement message

2. Status Query Message

This message is used by the broker to request the status of a server

asynchronously (i.e. the broker decides when it is necessary to sent this

message).

Field Description Type Length
(# of octets)

Message type or
ID

The value is 5 Unsigned
Short

2

Table 5: Status Query Message

The agent as a response to this message sends the performance report from the

last measurement interval.

3. Stop response Message

This message is sent by the broker to confirm the reception of a Stop message.

57

Field Description Type Length
(# of

octets)
Message type or
ID

The value is 7 Unsigned
Short

2

Table 6: Stop Response Message

5.5 Order of events between the broker and the agent

The timing diagram given below explains the order of exchange of messages

between the agent and the broker.

Monitoring agent

: : :

Stop

Update (1)

Update (2)

Update (n)

Registration_ack

Registration

QoS broker

Stop response

Query message

 Query response msg

Figure 7: Order of Events between the agent and the broker

58

5.6 The states of the Monitoring agent

The agent itself can operate in any of the following states, described further in

the FSM diagram for the agent.

(i) Idle state: The agent is in this state after the agent comes up and just

before it registers. At this time, the agent typically does the necessary

initialization for its UDP sockets etc.,

(ii) Preparation state: This is an intermediate state, when the agent has sent

out a Registration message to the broker and is waiting for a subsequent

Acknowledgement from the broker. In the eventuality of a lost/corrupted

Registration message, the agent continues to retry sending the

Registration after a certain time-out period, until it receives an Ack,

(iii) Active state: The agent enters this state when it has received the

necessary Ack from the broker and then it starts the monitoring process.

The messages in this state can be (a) periodic reports of updates to the

broker and (b) responses to asynchronous status query requests from the

broker

(iv) Stop Requested State: The agent is in this state waiting for a confirmation

that the broker received the Stop message correctly. After that the agent is

considered to at the idle state.

59

IDLE
STATE PREPARATION

STATE

ACTIVE
STATE

User Starts
agent/Registration

Registration_ack/-

Timeout/
Registration

(Retry)

End-of-
Period/Update

Query/Response
Stop ack./-

STOP_REQ
STATE User Stops agent

/Stop

Figure 8: Simplistic Finite State Machine diagram for the agent states

(Figure shows simplistic message names)

60

5.7 Implementation of the interface between the broker and agent

The various messages and their message structures are given in the header file

by the name “QoSBrokerIf.h”. The basic structure for any message (regardless of

whether the originator is the agent or the broker) has the name “Message_t”. It

includes a message id, an integer to differentiate between the various message

types and a union of the messages themselves, each of which again is a

structure.

The initial state of the agent is the Idle State. Upon initialization of the

BrokerHandler thread, the agent opens a UDP (connectionless) socket

“hListenSock ” and binds to a local port. Whenever any of the network (socket

related) events occurs on this named socket, the Windows DLL uses the

Windows WSAAsyncSelect function to inform the main Window with a named

message. The socket-related events that can occur are FD_READ (indicating

that a message has to be read from the socket), FD_WRITE (indicating that a

message has been sent on the socket) or and FD_CLOSE event (indicating that

the socket is closed). The first message that the agent sends to the broker is the

REGISTRATION_MSG. Along with this, data related to the server name, IP

address, etc. (which had been obtained from the registry) are passed along with

the registration message. Information on the global data related to the Apache is

also included.

The BrokerHandler thread then enters an indefinite loop waiting for any of 6

broker-related events. These events are:

61

� g_WriteReadyEvent –This event will be set when the FD_WRITE socket

event occurs on the socket. As mentioned before, occurrence of the

FD_WRITE socket event causes an appropriate message to be sent to the

main user interface window and one of those messages is the

g_WriteReadyEvent, indicating that data has been written onto the socket.

Now depending upon the state of the agent, the appropriate message is

written. If the agent is in the idle state, then the registration message will need

to be sent. At the same time, the register timer is set to the value obtained

from the Windows registry. Then the agent moves to the Preparation state.

Now in this state, if an acknowledgement message has not been received,

the agent will need to re-send the registration message. Then upon

successful registration, the agent moves to the active state. If at this stage a

query message is sent, then the agent sends a query response message,

sending the same information that is present in a performance report about

the load, utilization etc.

� g_ReadReadyEvent – This event will be set when the socket event

FD_READ occurs. This further means that some data is present on the

socket and that the agent needs to read this data. Again depending upon the

current agent state, appropriate action is taken. If the agent is in the idle state

at this stage, nothing needs to be done because an idle state indicates that

the agent has not even registered with the broker yet. The BrokerHandler

thread just breaks out of the loop here and does nothing since this is the

wrong state to receive any messages. In the preparation state, the agent (the

62

BrokerHandler thread) first checks to see if the received message is the

acknowledgement for the registration sent earlier by the agent. With this

REGISTER_ACK message, the broker also sends an ID for this agent as well

as performance report interval. If the register timer is still found to be active, it

is killed at this stage since now there is no need for registration. Now that the

performance report interval is known, the BrokerHandler thread sets the

PerfReportTimeOut timer to this value. So every time this timer expires, the

performance report has to be sent out. The successive setting of this timer is

taken care of by Windows WM_TIMER event. If the received message on the

socket, while the agent is in the preparation state, is the QUERY_MSG, then

the agent’s BrokerHandler thread prepares to sent the QUERY_RESP_MSG.

The agent’s BrokerHandler thread can receive this QUERY_MSG even while

the agent is in its active state. So again, the QUERY_RESP_MSG needs to

be sent out.

� g_SocketCloseEvent – Upon receiving this event, the two timers, namely,

RegisterTimer and PerfReportTimer are killed, the socket is closed and the

thread terminates.

� g_AgentExitEvent – Upon receiving this event, the two timers, register timer

and the performance report timer are killed, the socket is closed and the

thread exits.

� g_PerfReportTimeOutEvent – The time interval for performance reports to be

sent to the broker is set by the broker. Upon the expiry of this time interval,

the performance report is prepared, with data including information on server

63

load, g_ServerLoad, the server utilization, g_ServerUtilization, the report

sequence number (so that subsequent reports can be tracked), SeqNumber,

the mean response time, g_ServerMRTime, and the mean think time, for

which again we would need to lock the data during its access.

� g_RegisterTimeOutEvent – The registration timeout interval (i.e. if the

acknowledgement is not received from the broker, the registration message

has to be resent after this interval) is taken from the Windows.

64

 6 Manual Test scenario

Start the three entities, that is, the Apache server, the monitoring agent and the

QoS broker. The order is not important. Then open a web browser (Netscape

Navigator or Internet Explorer) on the same machine or from a different machine.

If it started on the same machine, open the URI “http://localhost” or open the URI

<http://IPAddress of the Apache server>. You should see a welcome page. Then start

browsing the pages in the web site. Please note that if you step out to the

Internet, the local Apache server is not the one that services your request and

hence you may not see the transactions registered. From the QoS broker send a

few queries. Let the setup run for few minutes or hours and if possible run more

clients on different machines and increase the load on the server. After you exit

the QoS broker and the monitoring agent, you can open the serverlog.txt and

clientlog.txt in the monitoring agent directory and QoS broker directory to see if

the performance reports were correctly generated and the query from the clients

were responded properly.

Upon running the whole setup, it was found that proper variables from the

Apache server were transmitted to the monitoring agent and then after

subsequent calculations of performance parameters, the agent passes on these

parameters to the broker. The log texts for the agent and the broker are present

in the serverlog.txt and clientlog.txt files, respectively. The messages in these log

texts clearly indicate the proper functioning of the protocol and the entities.

A more advanced test scenario would be as follows:

65

When the Apache Web server with the monitoring agent are installed and run on

one machine, the client requests could come in from another machine at a

different geographical location and the broker runs at a third location. Such a

scenario would be closest to the real-time applications for this monitoring agent.

In fact, there had been a plan to do such a test where we could run the Apache

at DSRG lab in Ottawa University, the client requests could come in through an

e-commerce traffic generator implemented by a Carleton University student and

Mohamed’s implementation of the planned broker could run on a machine in his

lab at the University of Montreal.

66

 7 Conclusions

This project aims at building a performance monitoring system for the Apache

web server, using IBM’s ARM API function calls which are inserted in proper

places within the server code. These calls send out triggers to another entity,

called the monitoring agent. The agent would then calculate the performance

attributes based on these triggers. And finally a third entity called the broker

would perform the actual load sharing between the various servers within the

network, thereby providing optimal performance.

Such an implementation is especially useful for electronic commerce applications

where load sharing is vital to a company’s profits. A customer to the company’s

ordering web site could be turned away if the particular server is already heavily

loaded. On the other hand, once the broker gets information about what the load

on each server on the network is, it can appropriately re-direct the incoming client

request to the lightly loaded server.

This implementation may very well be extended to measure other parameters

than the ones that have been mentioned in this report. Also since the ARM API

functions are not application specific, a similar work can be done for other types

of servers like FTP servers, Mail servers, Database servers etc.

Some future extensions to this project could be

� Using SNMP for the Web server management ,

� Having proper user interfaces (U/Is) in the form of self-explanatory GUIs

whereby tools like Microsoft Excel may be used to show the server

performance attributes in the form of graphs, etc.

67

8 Appendix A – Monitoring agent Code

(MultiServerThread_v2.cpp)

68

9 Main Apache source code (http_main.c)

69

10 Appendix B – ARM Instrumented Apache Server Code

(Logagent.c)

70

11 Appendix C – Prototype QoS broker Code (Client_v1.cpp)

71

 12 Header file for the ARM-instrumented Apache code and the
Monitoring agent code (arm_instr.h)

72

 13 Header file for the monitoring agent and the QoS broker
codes (QoSBrokerIf.h)

73

14 Appendix D – General User Guidelines

Upon initialization, the agent reads the configuration parameters from the

Windows Registry. These parameters are stored in the key

“HKEY_LOCAL_MACHINE\Software\CITR\monitoring agent “. The configuration

parameters are

� AgentQueryPort – This is the UDP port number on which the agent listens for

query requests from the broker. The default value for this port number can be

6000. However if on some machine on which the agent is running this port

number is reserved, an appropriate error log message (that the agent is not

able to bind to this local port number) shows up in the serverlog.txt file so that

the user may go to the right Windows registry entry and change this value to

something else.

� ApacheClusterName – This is the public cluster name for a bunch of servers

to which this particular server belongs. If the server moves to another cluster

at a different location, the registry entry has to be changed by the user. The

broker uses this value to find out which cluster this particular server belongs

to.

� ApacheServerName – This is the name of the particular server belonging to

the cluster name mentioned above. Again this information is necessary for the

broker to identify the server in a bunch of servers.

� PipeName – This gives the name of the pipe which is used by the agent and

Apache server to communicate with each other. The Apache server creates

74

this named pipe and the agent has to know the name to be able to open the

same pipe to read the data written by Apache. The first three characters

should be “\\.” If the server and the monitoring agent are on the same

machine. Else the “.” should be replaced by the host name of the machine on

which the Apache server is running.

� QoSBrokerName – This gives the fully qualified domain name / host name /

IP address (in dotted notation) of the QoS broker so that the agent can

determine the IP address of the broker based on its name.

� QoSBrokerPort – This gives the broker’s UDP port number to which the agent

sends its registration message, performance reports and query response

messages.

� RegisterTimeOut – This gives the time after which an agent will need to re-

send a registration message to the broker, if it hasn’t received an

acknowledgement message from the broker.

� ThinkTimeOut – This value gives the time after which the think time

calculating structure is cleaned up, i.e. the collected data is used to calculate

the mean think time and passed on to the broker as a part of the performance

report. In this project implementation, this value has been set to be equal to

the performance-reporting interval.

The three major entities in this project, namely, the Apache server, the

monitoring agent could be run on one machine or two different machines

depending on the type of IPC used to compile the monitoring agent and the

Apache server. If shared memory is used, the Apache server and the monitoring

75

agent should be run on the same machine. If “Pipe” is chosen, they could be run

on two different machines and the registry should be updated properly as

explained above. The QoS broker could be run on the same machine or a

different machine as mentioned earlier.

The three entities could be started in any order. The Apache server should be

started from a console window. The Apache server can also be run as an NT

service. In order to do this, the user should install the Apache server as an NT

service. He / she should then manually copy the changed ApacheCore.dll from

the Apache source directory or run the install option of nmake.exe, for example

“nmake /f Makefile.nt installd INSTDIR=dir “ for Windows NT. Refer to [3] for

more information on the installation of the Apache server.

76

15 Appendix E – Compiling the Modules

� Compiling Apache Server

Apache server should be compiled from an MS DOS Console window using the

nmake command. All the compilation should be done within the Microsoft Visual

C++ IDE (Integrated Development Environment). More information is given in [3].

� Compiling monitoring agent

To compile the monitoring agent, open MultiServerThread_v2.dsw file and do

“Rebuild all” from the Build menu of Visual Studio.

� Compiling prototype QoS broker

To compile the QoS broker, open Client_v1.dsw workspace file and do “Rebuild

all” from the Build menu of Visual Studio.

77

References

1. The ARM Web page < http://www.cmg.org/regions/cmgarmw/index.html>

2. The Apache Server web page <http://www.apache.org/>

3. http://www.apache.org/docs/windows.html#comp

4. Windows NT MSDN Library

5. Unix Network Programming – by Richard Stevens

